www.rodavigo.net +34 986 288118

Servicio de Att. al Cliente

Control systems Pressure reducing/surplussing valves

spirax Sarco SRV66HC **High Capacity Sanitary Pressure Reducing Valve**

TI-P186-10 CMGT Issue 4

Description

The SRV66HC all stainless steel sanitary pressure reducing valve is a double seated, high capacity, spring loaded proportional control valve which also benefits from having a quick release body clamp ring. It is designed for sanitary applications in the food processing, brewing/beverage and pharmaceutical industries. The angle design allows for complete draining with no dead pockets and is suitable for use in CIP and SIP systems. The valve does not require an external pilot line.

Valve tightness

Valve tightness is in accordance with VDI/VDE guideline 2174 (leakage rate < 0.5% of Kvs value).

Standard surface finish

Internal wetted parts - standard surface finish of Ra < 3.2 µm.

Available options

End connections; ASME BPE hygienic clamp, flanged ASME or EN 1092, Aseptic thread, welding spigots. PN10 rated inlet flange for DN65 - DN100 sizes.

Internal surface finishes; Ra 1.6 µm, 0.80 µm, 0.40 µm and 0.25 µm. electropolished.

EPDM diaphragm and 'O' ring seals for gas and liquid service. Maximum operating temperature when this option is used: 130 °C.

Sealed bonnet with leakage line for toxic or hazardous media.

For sizes DN65 - DN100 with PN16/PN2.5 (0.3 - 1.1 bar g), PN16/PN6 (0.8 - 2.5 bar g) and PN10 (2.0 - 5.0 bar g).

Sizes and end connections

DN25, DN40, DN50, DN65, DN80 and DN100 ISO 2852 sanitary clamp compatible.

Pressure/temperature limits

See overleaf

133

Control systems Pressure reducing/surplussing valves

Materials

4

No.	Part	Material		
1	Body	Stainless steel		
2	Seat	Stainless steel	_	
3	Spacer, upper	Stainless steel	1.4404 316L	
4	Spacer, lower	Stainless steel		
5	Diaphragm disc	Stainless steel	—	
6	Spring	Stainless steel	1.4310 301	
7	Spring cap	Stainless steel	CrNiMo	
8	Adjusting screw	Stainless steel	A4-70	
9	Lower stem	Stainless steel	1.4404 316L	
10	'O' ring	Elastomer		
11	'O' ring	Elastomer	- FEPM /5	
12	Diaphragm	Elastomer	FPM	
13	Protective film	PTFE	PTFE	
14	Upper stem	Stainless steel	1.4404 316L	
15	Spring washer	Stainless steel	A2	
16	Nut	Stainless steel	A4-70	
17	'O' ring	Elastomer	FEPM 75	
18	Clamp	Stainless steel		
19	Screw	Stainless steel	- 1.4404 316L	
20	Gasket	Composite	Nova-Uni	

spirax sarco

TI-P186-10 CMGT Issue 4

SRV66HC High Capacity Sanitary Pressure Reducing Valve

Polígono Industrial O Rebullón s/n. 36416 - Mos - España - rodavigo@rodavigo.com

www.rodavigo.net +34 986 288118

Servicio de Att. al Cliente

Control systems

Pressure reducing/surplussing valves

Pressure/temperature limits

The product **must not** be used in this region.

The product should not be used in this region or beyond its operating range as damage to the internals may occur.

A-B-C Maximum operating conditions for steam

D-E-C Maximum operating conditions for liquids and gases

	Inlet	PN16
Body design conditions	Outlet see 'Pressure setting range' below	
Maximum design pressure		15.2 bar @ 50 °C
Maximum design temperature		300 °C @ 9 bar g
Minimum design temperature		-10 °C
Maximum anarating tamparatura		EPDM diaphragm 130 °C
maximum operating temperature		FPM diaphragm 180 °C
Maximum operating pressure (inlet)		8 bar g
Minimum operating temperature		-10 °C
Designed for a maximum cold hydraulic	test pressure of:	24 bar g

Pressure setting range

Size	DN40 - DN100	DN25 - DN100	DN25 - DN100
Inlet/outlet	PN16/PN2.5	PN16/PN6	PN16/PN10
Spring range	0.3 - 1.1 bar g	0.8 - 2.5 bar g	2.0 - 5.0 bar g

K, values

To maximise the control accuracy (especially for large load variations) use the Kv values given at 20% offset. For safety valve sizing use the maximum Kv values.

Valve size	DN25	DN40	DN50	DN65	DN80	DN100	For conversion:
K _v at 20% offset	3.1	16.9	16.9	46.2	53.9	61.6	$C_v (UK) = K_v \times 0.93$
Maximum K _v	4.0	22.0	22.0	60.0	70.0	80.0	$-C_{v}(US) = K_{v} \times 1.156$

Control systems Pressure reducing/surplussing valves

Dimensions/weights (approximate) in mm and kg

Size	Α	В	С	Weight
DN25	100	138	305	2.5
DN40	115	200	345	6.5
DN50	125	200	355	6.5
DN65	175	240	690	26.0
DN80	175	240	690	26.0
DN100	175	240	690	26.0

Sizing

The required Kv can be calculated from the following formulae,

Where:

- m = Steam mass flow (kg/h)
- \dot{V} = Liquid volume flow (m³/h)
- \dot{V}_{a} = Gas flow at standard conditions: 0 °C @ 1.013 bar a (m³/h)
- P₁ = Upstream pressure (bar absolute)
- P₂ = Downstream pressure (bar absolute)
- $\mathbf{c} = \frac{\mathsf{P}_1 \mathsf{P}_2}{\mathsf{P}_1} \text{ (pressure drop factor)}$
- S = Specific gravity
- Т = Absolute average gas temperature (Kelvin = °C + 273)

Critical pressure drop: $P_2 \leq 0.58 P_1$ $K_V = \frac{\dot{m}_s}{12 P_1}$

Gas

Non-critical pressure drop: $P_2 \ge 0.58 P_1$ $K_{V} = \frac{\dot{V}_{g}}{287} \sqrt{\frac{ST}{(P_{1} - P_{2})(P_{1} + P_{2})}}$ m°₅ K_V = - $12 P_1 \sqrt{1 - 5.67 (0.42 - \chi)^2}$

Liquid
$$K_V = \dot{V} \sqrt{\frac{S}{P_1 - P_2}}$$

Calculating the Ky and selecting a suitable valve

Using your maximum flowrate and smallest differential pressure $(P_1 - P_2)$, calculate the required K_V from one of the above formulae. Select a valve Kv that is 30% greater than the calculated Kv. The optimum working range of the selected valve should ideally be within the range of 10 to 70% of its Kv.

	Cha and	Saturated	10 to 40 m/s	
	Steam	Superheated	15 to 60 m/s	
Recommended fluid velocities	0	up to 2 bar g	2 to 10 m/s	
	Gas	above 2 bar g	5 to 40 m/s	
	Liquids		1 to 5 m/s	
	Liquids	above 2 bar g	5 to 40 m/s 1 to 5 m/s	

spirax /sarco

SRV66HC High Capacity Sanitary Pressure Reducing Valve

Servicio de Att. al Cliente

Control systems

Pressure reducing/surplussing valves

Safety information, installation and maintenance

For full details see the Installation and Maintenance Instructions (IM-P186-11) supplied with the product.

How to order

Example: 1 off, Spirax Sarco DN40 SRV66HC direct acting pressure reducing valve having a pressure range of 0.8 - 2.5 bar g and a PN16 / PN6 rating and FPM diaphragm.

Spare parts

The spare parts available are detailed below. No other parts are supplied as spares.

Available spares

Diaphragm, 'O' ring and gasket kit	10, 11, 12, 13, 17, 20
------------------------------------	------------------------

How to order spares

Always order spares by using the description given in the column headed 'Available spares' and state the size, model, pressure range and PN rating.

Example: 1 - Diaphragm, 'O' ring and gasket kit for a Spirax Sarco DN40 SRV66HC direct acting pressure reducing valve having a pressure range of 0.8 – 2.5 bar g and a PN16/PN6 rating and FPM diaphragm.

www.rodavigo.net

+34 986 288118 Servicio de Att. al Cliente

Control systems

Pressure reducing/surplussing valves

4

Polígono Industrial O Rebullón s/n. 36416 - Mos - España - rodavigo@rodavigo.com